Self-aliquoting micro-grooves in combination with laser ablation-ICP-mass spectrometry for the analysis of challenging liquids: quantification of lead in whole blood
نویسندگان
چکیده
We present a technique for the fast screening of the lead concentration in whole blood samples using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The whole blood sample is deposited on a polymeric surface and wiped across a set of micro-grooves previously engraved into the surface. The engraving of the micro-grooves was accomplished with the same laser system used for LA-ICP-MS analysis. In each groove, a part of the liquid blood is trapped, and thus, the sample is divided into sub-aliquots. These aliquots dry quasi instantly and are then investigated by means of LA-ICP-MS. For quantification, external calibration against aqueous standard solutions was relied on, with iron as an internal standard to account for varying volumes of the sample aliquots. The (208)Pb/(57)Fe nuclide ratio used for quantification was obtained via a data treatment protocol so far only used in the context of isotope ratio determination involving transient signals. The method presented here was shown to provide reliable results for Recipe ClinChek® Whole Blood Control levels I-III (nos. 8840-8842), with a repeatability of typically 3 % relative standard deviation (n = 6, for Pb at 442 μg L(-1)). Spiked and non-spiked real whole blood was analysed as well, and the results were compared with those obtained via dilution and sectorfield ICP-MS. A good agreement between both methods was observed. The detection limit (3 s) for lead in whole blood was established to be 10 μg L(-1) for the laser ablation method presented here. Graphical Abstract Micro-grooves are filled with whole blood, dried, and analyzed by laser ablation ICP-mass spectrometry. Notice that the laser moves in perpendicular direction with regard to the micro-grooves.
منابع مشابه
Analysis of lead in tooth enamel by laser ablation-inductively coupled plasma-mass spectrometry.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine the Pb/Ca ratios in the enamel of deciduous incisors, a biomarker of in utero Pb exposure, using pelletized bone certified reference materials (CRMs) as calibrants. The detection limit for Pb by LA-ICP-MS was 11 microg kg(-1) demonstrating an adequate sensitivity for Pb in the teeth of unexposed indivi...
متن کاملبررسی ترکیب و نقش عناصر کمیاب در شکلگیری کانسنگ مگنتیتی توده نفوذی نامن، غرب سبزوار به روش LA-ICP-MS
Basic rocks appear as cumulative hornblende gabbros in the Namen pluton, West of Sabzevar. One outcrop of these rocks contains magnetite ore patches. Although magnetite- bearing hornblende gabbro (MHG) and other hornblende gabbros (HG) have similar mineralogy, their trace element compositions are completely different. Trace element analysis of magnetite minerals by laser ablation inductively co...
متن کاملEvaluation of Crater Width in Nanosecond Laser Ablation of Ti in Liquids and the Effect of Light Absorption by Ablated Nano-Particles
Micro size craters were created by interaction of nanosecond laser beam with titanium target in liquid media. The dimension of crater i.e. depth and width is important in some applications such as micromachining. When the interaction occurs in liquid environment, the ablated materials from the target expand into the liquid. The ablated material can affect the interaction process if the ablated ...
متن کاملRecent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely accepted method for direct sampling of solid materials for trace elemental analysis. The number of reported applications is high and the application range is broad; besides geochemistry, LA-ICP-MS is mostly used in environmental chemistry and the life sciences. This review focuses on the application of LA-ICP-MS...
متن کاملImaging mass spectrometry in biological tissues by laser ablation inductively coupled plasma mass spectrometry.
Of all the inorganic mass spectrometric techniques, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) plays a key role as a powerful and sensitive microanalytical technique enabling multi- element trace analysis and isotope ratio measurements at trace and ultratrace level. LA-ICP-MS was used to produce images of detailed regionally-specific element distribution in 20 micro...
متن کامل